

Distilling LLMs into Small Language Models for Medical Reasoning

Efficient AI

Congcong Xu, Shoaib Ahmed, and Anil Telaprolu

Background

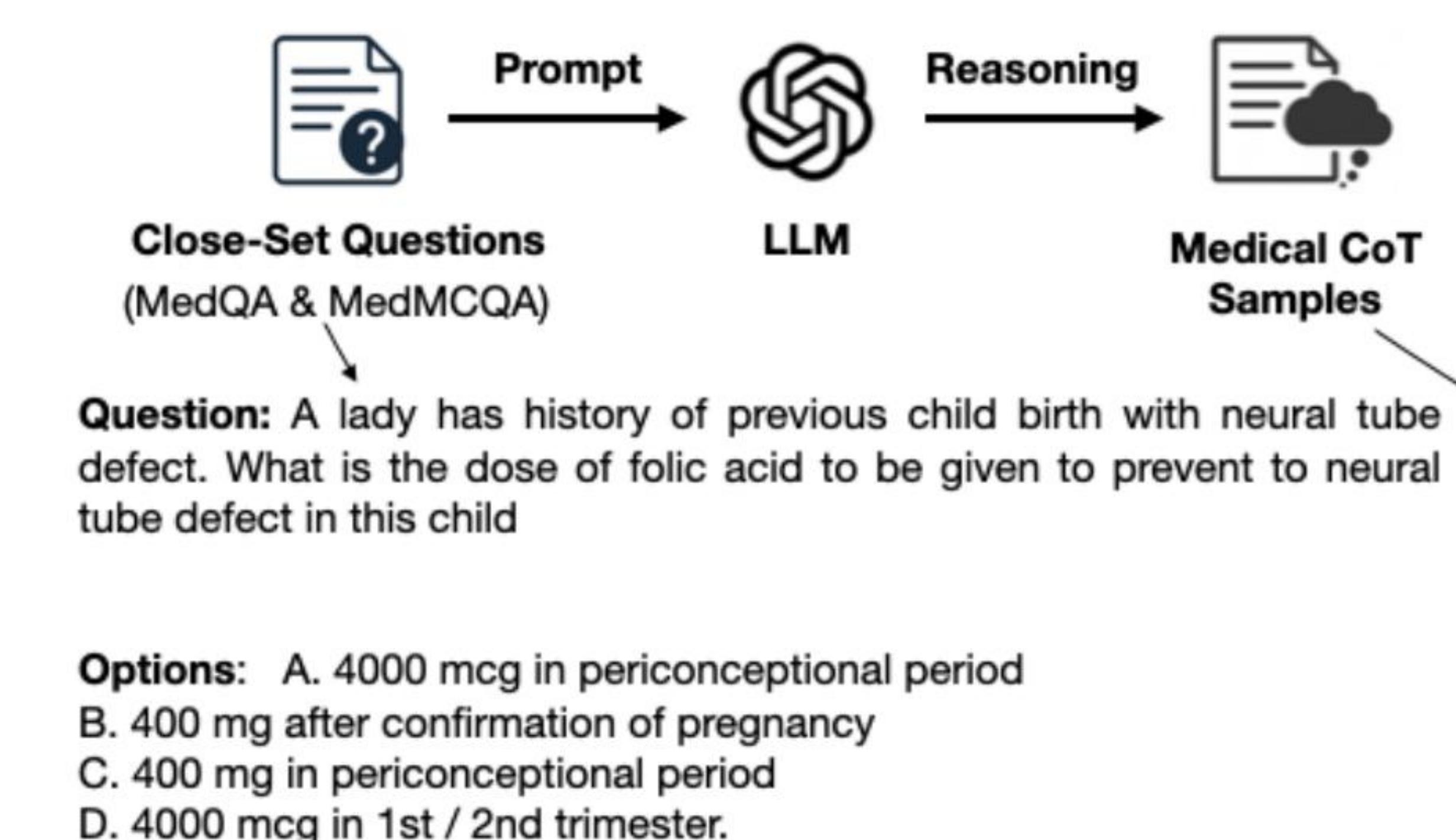
- Large frontier LLMs show strong reasoning but are too costly to deploy widely while small language models provide significant benefits in cost-effectiveness, deployment efficiency, and specialized performance (Wang et al., 2024). Hospitals and medical schools need smaller, privacy-friendly models that can explain their answers.
- However, current small open-weight models have domain shifts especially on medical domain (Guo et al., 2025). They still struggle on hard medical QA benchmarks like MedQA and MedMCQA (Kim et al., 2025)
- Recent works like DeepSeek-R1 (Guo et al., 2025), s1 (Muennighoff et al., 2025), show reasoning can be distilled from LLM to small models effectively.

Aim

- We investigate distilling medical reasoning into a compact LLM to improve accuracy, reasoning ability, and efficiency for medical question answering.

Methodology

(1) Medical Reasoning Generation



(2) Distillation

CoT: Okay, so we have a question about a woman who's had a baby with a neural tube defect before.

First, I know that folic acid is super important in reducing the risk of neural tube defects. But the tricky part is figuring out the right dose.

.....

Therefore, the best option from the choices given is:
A. 4000 mcg in the periconceptional period.

- ✓ We build a distillation pipeline where a large “teacher” LLM generates chain-of-thought explanations for medical QA questions.
- ✓ These teacher traces form a curated medical reasoning dataset combining MedQA and MedMCQA with question, step-by-step reasoning, and final answer.
- ✓ A compact open-weight “student” model is fine-tuned on this dataset using supervised learning to imitate the teacher’s answers and reasoning style.
- ✓ Reinforcement learning is then used to further shape the student’s reasoning, rewarding correct, concise, and clinically safe explanations.
- ✓ We evaluate the distilled model on standard medical QA benchmarks, targeting near-teacher accuracy with much lower computational cost.

Results

Model	MedQA	MedMCQA	Avg.
DeepSeek-67B-Chat	57.1	51.7	54.4
DeepSeek-R1-Distill-Llama-8B	20.3	27.1	23.7
Medical-CoT-Distill-Llama-8B	35.3	38.8	37.1

- ✓ Our distilled small language model illustrates better overall medical reasoning and accuracy than the base Llama-8B model.
- ✓ Medical reasoning ability can effectively transferred to small language model by distillation.
- ✓ Small language models have strong domain-specific accuracy and customization

Future Works

- More complex distillation methods can be designed to effectively transfer the medical reasoning ability.
- Reinforcement learning can be carefully implied into the pipeline.