Vision-Driven RL for Legacy Games: A Case Study in The World's Hardest Game

@S DuckAl

Introduction

Most existing video game reinforcement learning
solutions utilize full game cloning, due to the lack of
source code access.

Classic Flash-based games, such as The World’s
Hardest Game, pose unique challenges for
Reinforcement Learning (RL) due to its lack of
structured APlIs or internal state information.

This project uses computer vision techniques, like
color masking, to provide input data for the learning
model, allowing the learning process to utilize the
native game.

The results of this project can extend outside the
space of legacy games into more complex video
games, such as real-time multiplayer games, without

the need for emulation.

Flash Fanatics

'Jason Lee, 'George Mularadelis, 'Dhruv Prasanna, 'Dr. Hao Wang

'Stevens Institute of Technology

Environment

Screen Capture

Object Detection

Design

The environment takes input screenshots and interprets them using color

masking to find each type of object that needs to be accounted for.

The objects are fed as a state vector into the agent's Deep-Q Network to

obtain an action which will be taken

The model then inputs the action to the environment, and the process

loops until the goal state is reached a sufficient number of times

The reward structure incentivises moving quickly outside of the starting

zone, then to any coins, then to checkpoints, including the goal.

Enemy proximity is tracked relative to the player and punishments are

dispersed for getting too close and being reset to the start.

A time-based punishment is also applied to ensure the model tries to

reach the goal in a timely manner

%gs,@

Evaluation

The model generally attempts to leave the starting
area, but exercises great caution in the process
The model always goes for the coin and then the
checkpoint but struggles dodging the enemies
The reward structure is quite complicated to make
due to the overlapping colors specifically of the

goals, checkpoints, and starting point

Conclusion

We created a RL model that takes a screenshot
every few frames and detects all the essential
elements of the game and makes decisions based
on their locations

Our reward system requires more tuning and
refinement to efficiently move to the goal

We used Q-Learning exclusively, however, an
Actor-Critic model with policy gradients may
perform better due to its more explorative nature
The inablility to have multiple actors in a single
game makes training more time consuming,
unless multiple emulators are used in parallel
The baseline idea of this project can be
transferred to other games that have inaccessible

APIls or are complicated to clone for RL purposes



