How Aging Impacts Bias in Healthcare

What are we doing?

Exploring how age impacts fairness in Al-driven hospital readmission predictions 🖁 💾 👶

Analyzing results from both Decision Trees # and Neural Networks * to detect patterns of bias

- Yev focus areas:
- ★ Are models treating age groups equally?
- ♠ Do prediction rates vary unfairly across age ranges?
- ★ What do fairness metrics (Demographic Parity, ☑ Equal.)

Opportunity, Equalized Odds) reveal?

Data Distribution Age Distribution Insights: · Majority of respondents are from [60-70] older age groups Younger demographics are notably underrepresented . This age imbalance may introduce a generational bias in the machine [90-100]learning models used to predict the readmissions Ran against statistical learning models like decision trees vs deep learning models like MLP, we found decreasing performance with age! · Reference datasets: Hospital [50-60] Readmissions Datasets

👺 Fairness Insights: Selection Rate: DT and MLP show similar range in hospital data DT dominates in diabetes, MLP close to zero Recall (Equal Opportunity): MLP hits higher recall in most hospital age groups MLP recall flatlines in diabetes - bias likely from @ False Positive Rate (Equalized Odds): Name = No. | March = No. | Mar Diabetes: DT shoots up for a single group —

more consistent fairness across ages Selection & Recall (Diabetes -MLP): Bars remain flat near zero consistent but signals poor group attention Recall (Diabetes - DT): One bar spikes up while others stay low -

- strong bias or imbalance Each bar = one age group's
- value big jumps = more disparity. flat = less variation

Our Conclusions

What Are We Seeing?

- Age impacts accuracy performance drops as age increases
- Data ≠ performance older groups have more data but worse outcomes
- Tree predicts across age groups, but not always fairly
- MLP balances results better in hospital data, but fails in diabetes
- O Deep Learning skips positive predictions for diabetes zero recall across groups
- ▲ Model struggles most with oldest age groups complexity + data imbalance
- Fairness ≠ metric scores real-world usefulness matters more
- Al in healthcare must treat all ages with care, not just accuracy

Investigating bias of CNN on UTKFace images dataset.

Model Architecture

- 3 convolutional layers (32→64→128), ReLU, max-pool
- Dense layer with 256 units + dropout
- · Single output neuron for age prediction
- . Trained 30 epochs using MSE loss and Adam optimizer

Error Ranges Widen in Older Groups

- · Younger groups: tight, symmetric error
- Older groups: wider "tails" → more large Median error also increases across age
- Highlights inconsistency and underperformance in older predictions
- Insight There is a strong relationship between dataset size and MAE
- MAE ↑ with age: 3.2 yrs (0-18) → 10.6
- Fewer samples → higher error (r ≈ -0.95)
- Older groups show most bias

Takeaways:

- . Bias increases with age due to underrepresentation of older faces. . MAE by age and race reveals some

- MAE increases with ane across all racial groups Some racial groups (e.g. 2) 4) show steeper error
- Differences between races are small in younger ages
- Insight Suggests
- compounding effects of age and representation