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v Reduced peak GPU memory by ~25%
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The Goal of this project is optimizing model inference speed —-I=I=1=1 g = Within =1.2% of original on HotpotQA/NarrativeQA
for LLaMA 3 8B by applying pruning, guantization, and Ents) () | [emns] | Venck]femcc) S )
distillation, resulting in faster inference with minimal GPU . Distilled Model Performance-
usage. ‘ 4 Outperformed Mistral 7B on long-text QA (F1: +2.3%)
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1 Methodology \
« Model: LLaMA 3 8B sof

* Pipeline: Pruning —» GPTQ/AWQ Quantization (8-bit —
4-bit) — Distillation
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* Optimization: NVIDIA NeMo / Megatron

* Techniques:
o Pruned from 8B to 6.4B parameters
o Distillation with 70B LLaMA-3 teacher (long-form QA)
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* Tools: Hugging Face, bitsandbytes, Flash Attention 2,
PyTorch
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 Evaluation:

o Metrics: EM, F1, latency, memory | T ----------
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