
EfficientNet B0(Modern)

Optimizer: Adam | Pretrained B0 | Epochs: 10

FGSM attack result

• Best Accuracy on Clean Data
• Accuracy: 99.30%

• Bad Robustness to FGSM

• At ε = 0.01 Accuracy drops to 43.20%

• At ε = 0.05 Accuracy drops to 37.44%
• But low drop rate after

Why?
• Very Deep architecture model
• Modern design

• Heavy
• Moderate training time
• High memory usage
• Slowest inference

• Transfer learning -> Sensitive to FGSM
• Accuray 88% after Adversarial Training

AlexNet (Old)

Optimizer: SGD | Epochs: 50

FGSM attack result

• Worst Accuracy on Clean Data
• Accuracy: 87.72%

• Best Robustness to FGSM

• At ε = 0.01 Accuracy drops to 83.32%

• At ε = 0.05 Accuracy drops to 63.63%

Why?
• Deep-architecture model
• Outdated design

• Quite heavy
• Take long to train,
• High memory usage
• Slow inference

Introduction
• Traffic sign recognition is critical for autonomous driving and

public road safety.

• Machine learning (ML) models, while accurate, are vulnerable to

adversarial attacks like Fast Gradient Sign Method(FGSM).

• Core question: Are modern ML models more robust against

FGSM attacks without explicit defenses compared to older

architectures?

Adversarial Robustness of Traffic Sign Recognition:

Evaluating FGSM Attack on Models

Jingxuan Zhu, Yasin Hasanpoor, Shotitouch Tuangcharoentip
AAI 595 Applied Machine Learning

Data
• Dataset: German Traffic Sign Recognition Benchmark (GTSRB)

• 43 traffic sign classes

• High-quality labeled images

• Preprocessing:

• Greyscale conversion

• Data normalization

• Split: 80% training / 20% testing

• GTSRB is widely used in both classification and adversarial

robustness research.

FGSM Attack
(Fast Gradient Sign Method)

Perturbs input images to trick models
ε values used: 0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1

CNN-VGG based (Mid)

Optimizer: Adam | Epochs: 50

FGSM attack result

• Good Accuracy on Clean Data
• Accuracy: 98.15%

• Bad Robustness to FGSM

• At ε = 0.01 Accuracy drops to 67.50%

• At ε = 0.05 Accuracy drops to 36.95%

Why?
• Shallow-architecture Model
• Compact design

• Lightweight
• Less time to train,
• Low memory usage
• Fast inference

AAI 595-B

	Untitled Section
	Slide 1

