Introduction

Problem and Motivation: There is a gap between conventional medical decision-making and Al-driven diagnostics - a significant disconnect between Al advancements and their
integration into routine patient care. Clinicians, together with Al-driven approaches, would be better able to detect diseases and understand patient situations.

EVALUATING STATISTICAL MACHINE LEARNING AND
DEEP LEARNING MODELS IN HEALTHCARE Al

FROM DIAGNOSIS TO PATIENT EXPERIENCE:
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Objective: Binary classification of statistical machine learning and deep learning models for various medical datasets.

Novelty: Multi-Modality, Head-to-Head | Unified Interpretability and Editing Framework | Clinical-Grade Efficiency and Practicality | End-to-End Open-Source Toolkit
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e Hybrid CNN-SVM
model has the best
accuracy and has

the visualization
gualities of CNN.

e ATF-IDF+LR
pipeline has high
accuracy and stays
robust after a
rank-1 “knowledge
edit” unlike BERT
which collapsed to

89% post edit.

Dataset Model Accuracy Precision Recall F1 AUC-ROC Interpretability Efficiency
UCI Heart Disease (Tabular) Logistic Regression (LR) 0.90 0.90 0.90 0.90 0.90 Permutation Feature Importance and SHAP Values 0.010 ms per sample, 0.01 MB
Multi-Layer Perceptron 0.91 0.91 0.91 0.91 0.92 Permutation Feature Importance and SHAP Values 0.018 ms per sample, 0.08 MB
eOphtha Retinopathy (Images) Convolutional Neural Network (CNN) 0.74 1.00 0.57 0.72 0.86 UMAP Visualization, Grad-CAM Visualization 0.93 ms per sample, 196.36 MB
Support Vector Machine (SVM) 0.81 0.81 0.81 0.81 0.89 Top Feature Visualization 0.18 ms per sample, 0.31 MB
SVM Handcrafted 0.79 0.82 0.79 0.80 0.85 Feature Visualization Images 0.23 ms per sample, 0.94MB
CNN+SVM (Hybrid) 0.83 0.86 0.88 0.87 0.94 Principal Component Importance 0.74 ms per sample, 42.0MB
UCI Drug Reviews (Text) LR 1.00 1.00 1.00 1.00 0.99 Top Positive/Negative TF-IDF Features 0.0009 ms per sample, 0.08 MB
BERT (Bidirectional Transformer) 0.95 0.95 0.95 0.95 0.94 Word Attributions, Attention Rollout 20.13 ms per sample, 0.04 MB
LR (Post-Coefficient / Weight Vector Edit) 0.99 0.99 0.99 0.99 0.99
BERT (Post-ROME Rank-1 Weight Update) 0.89 0.90 0.89 0.89 0.80
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